Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nucleic Acids Res ; 48(22): 12415-12435, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33167030

RESUMO

The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5' end, the ribosomal frameshift segment and the 3'-untranslated region (3'-UTR) of the SCoV2 genome, their large-scale production and NMR-based secondary structure determination. The NMR data are corroborated with secondary structure probing by DMS footprinting experiments. The close agreement of NMR secondary structure determination of isolated RNA elements with DMS footprinting and NMR performed on larger RNA regions shows that the secondary structure elements fold independently. The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention.


Assuntos
COVID-19/prevenção & controle , Espectroscopia de Ressonância Magnética/métodos , Conformação de Ácido Nucleico , RNA Viral/química , SARS-CoV-2/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , COVID-19/epidemiologia , COVID-19/virologia , Mudança da Fase de Leitura do Gene Ribossômico/genética , Genoma Viral/genética , Humanos , Modelos Moleculares , Pandemias , SARS-CoV-2/fisiologia
3.
Biomol NMR Assign ; 13(2): 383-390, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31432400

RESUMO

The PilF protein from the thermophilic bacterium Thermus thermophilus is a traffic ATPase powering the assembly of the DNA translocation machinery as well as of type 4 pili. Thereby PilF mediates the natural transformability of T. thermophilus. PilF contains a C-terminal ATPase domain and three N-terminal domains with partial homology to so-called general secretory pathway II (GSPII) domains. These three GSPII domains (GSPII-A, GSPII-B and GSPII-C) are essential for pilus assembly and twitching motility. They show varying degrees of sequence homology to the N-terminal domain of the ATPase MshE from Vibrio cholerae which binds the bacterial second messenger molecule c-di-GMP. NMR experiments demonstrate that the GSPII-B domain of PilF also binds c-di-GMP with high affinity and forms a 1:1 complex in slow exchange on the NMR time scale. As a prerequisite for structural studies of c-di-GMP binding to the GSPII-B domain of T. thermophilus PilF we present here the NMR resonance assignments for the apo and the c-di-GMP bound state of GSPII-B. In addition, we map the binding site for c-di-GMP on the GSPII-B domain using chemical shift perturbation data and compare the dynamics of the apo and the c-di-GMP-bound state of the GSPII-B domain based on {1H},15N-hetNOE data.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , GMP Cíclico/química , GMP Cíclico/metabolismo , Dimerização , Ressonância Magnética Nuclear Biomolecular , Thermus thermophilus/enzimologia
4.
Biomol NMR Assign ; 13(2): 361-366, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31372934

RESUMO

The natural transformation system of the thermophilic bacterium Thermus thermophilus is one of the most efficient DNA transport systems in terms of DNA uptake rate and promiscuity. The DNA transporter of T. thermophilus plays an important role in interdomain DNA transfer in hot environments. PilF is the traffic ATPase that provides the energy for the assembly of the DNA translocation machinery and the functionally linked type IV pilus system in T. thermophilus. In contrast to other known traffic ATPases, the N-terminal region of PilF harbors three consecutive domains with homology to general secretory pathway II (GSPII) domains. These GSPII-like domains influence pilus assembly, twitching motility and transformation efficiency. A structural homolog of the PilF GSPII-like domains, the N-terminal domain of the traffic ATPase MshE from Vibrio cholerae, was recently crystallized in complex with the bacterial second messenger c-di-GMP. In order to study the consequences of c-di-GMP binding on the three-dimensional architecture of PilF, we initiated structural studies on the PilF GSPII-like domains. Here, we present the 1H, 13C and 15N chemical shift assignments for the isolated PilF GSPII-C domain from T. thermophilus in complex with c-di-GMP. In addition, the structural dynamics of the complex was investigated in an {1H},15N-hetNOE experiment.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , GMP Cíclico/química , GMP Cíclico/metabolismo , Dimerização , Ressonância Magnética Nuclear Biomolecular , Thermus thermophilus/enzimologia , Ligação Proteica , Domínios Proteicos
5.
Nucleic Acids Res ; 47(5): 2654-2665, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30590743

RESUMO

S-adenosylmethionine (SAM) is a central metabolite since it is used as a methyl group donor in many different biochemical reactions. Many bacteria control intracellular SAM concentrations using riboswitch-based mechanisms. A number of structurally different riboswitch families specifically bind to SAM and mainly regulate the transcription or the translation of SAM-biosynthetic enzymes. In addition, a highly specific riboswitch class recognizes S-adenosylhomocysteine (SAH)-the product of SAM-dependent methyl group transfer reactions-and regulates enzymes responsible for SAH hydrolysis. High-resolution structures are available for many of these riboswitch classes and illustrate how they discriminate between the two structurally similar ligands SAM and SAH. The so-called SAM/SAH riboswitch class binds both ligands with similar affinities and is structurally not yet characterized. Here, we present a high-resolution nuclear magnetic resonance structure of a member of the SAM/SAH-riboswitch class in complex with SAH. Ligand binding induces pseudoknot formation and sequestration of the ribosome binding site. Thus, the SAM/SAH-riboswitches are translational 'OFF'-switches. Our results establish a structural basis for the unusual bispecificity of this riboswitch class. In conjunction with genomic data our structure suggests that the SAM/SAH-riboswitches might be an evolutionary late invention and not a remnant of a primordial RNA-world as suggested for other riboswitches.


Assuntos
Biossíntese de Proteínas , Riboswitch/genética , S-Adenosil-Homocisteína/química , S-Adenosilmetionina/química , Evolução Molecular , Genômica , Ligantes , RNA/química , RNA/genética , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo
6.
Biomol NMR Assign ; 12(2): 329-334, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30051308

RESUMO

Riboswitches are structured RNA elements in the 5'-untranslated regions of bacterial mRNAs that are able to control the transcription or translation of these mRNAs in response to the specific binding of small molecules such as certain metabolites. Riboswitches that bind with high specificity to either S-adenosylmethionine (SAM) or S-adenosylhomocysteine (SAH) are widespread in bacteria. Based on differences in secondary structure and sequence these riboswitches can be grouped into a number of distinct classes. X-ray structures for riboswitch RNAs in complex with SAM or SAH established a structural basis for understanding ligand recognition and discrimination in many of these riboswitch classes. One class of riboswitches-the so-called SAM/SAH riboswitch class-binds SAM and SAH with similar affinity. However, this class of riboswitches is structurally not yet characterized and the structural basis for its unusual bispecificity is not established. In order to understand the ligand recognition mode that enables this riboswitch to bind both SAM and SAH with similar affinities, we are currently determining its structure in complex with SAH using NMR spectroscopy. Here, we present the NMR resonance assignment of the SAM/SAH binding riboswitch (env9b) in complex with SAH as a prerequisite for a solution NMR-based high-resolution structure determination.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Riboswitch , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Conformação de Ácido Nucleico
7.
RNA ; 24(10): 1390-1402, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30006500

RESUMO

In certain structural or functional contexts, RNA structures can contain protonated nucleotides. However, a direct role for stably protonated nucleotides in ligand binding and ligand recognition has not yet been demonstrated unambiguously. Previous X-ray structures of c-GAMP binding riboswitch aptamer domains in complex with their near-cognate ligand c-di-GMP suggest that an adenine of the riboswitch either forms two hydrogen bonds to a G nucleotide of the ligand in the unusual enol tautomeric form or that the adenine in its N1 protonated form binds the G nucleotide of the ligand in its canonical keto tautomeric state. By using NMR spectroscopy we demonstrate that the c-GAMP riboswitches bind c-di-GMP using a stably protonated adenine in the ligand binding pocket. Thereby, we provide novel insights into the putative biological functions of protonated nucleotides in RNA, which in this case influence the ligand selectivity in a riboswitch.


Assuntos
Adenina/metabolismo , GMP Cíclico/análogos & derivados , Nucleotídeos Cíclicos/metabolismo , RNA/genética , RNA/metabolismo , Riboswitch , Adenina/química , GMP Cíclico/química , GMP Cíclico/metabolismo , Ligantes , Espectroscopia de Ressonância Magnética , Nucleotídeos Cíclicos/química , Ligação Proteica , RNA/química , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Vibrio cholerae/genética
8.
J Biomol NMR ; 69(1): 31-44, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28879611

RESUMO

Recently, 15N-detected multidimensional NMR experiments have been introduced for the investigation of proteins. Utilization of the slow transverse relaxation of nitrogen nuclei in a 15N-TROSY experiment allowed recording of high quality spectra for high molecular weight proteins, even in the absence of deuteration. Here, we demonstrate the applicability of three 15N-detected H-N correlation experiments (TROSY, BEST-TROSY and HSQC) to RNA. With the newly established 15N-detected BEST-TROSY experiment, which proves to be the most sensitive 15N-detected H-N correlation experiment, spectra for five RNA molecules ranging in size from 5 to 100 kDa were recorded. These spectra yielded high resolution in the 15N-dimension even for larger RNAs since the increase in line width with molecular weight is more pronounced in the 1H- than in the 15N-dimension. Further, we could experimentally validate the difference in relaxation behavior of imino groups in AU and GC base pairs. Additionally, we showed that 15N-detected experiments theoretically should benefit from sensitivity and resolution advantages at higher static fields but that the latter is obscured by exchange dynamics within the RNAs.


Assuntos
Isótopos de Nitrogênio/química , Ressonância Magnética Nuclear Biomolecular/métodos , RNA/química
9.
Elife ; 62017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28541183

RESUMO

In bacteria, the regulation of gene expression by cis-acting transcriptional riboswitches located in the 5'-untranslated regions of messenger RNA requires the temporal synchronization of RNA synthesis and ligand binding-dependent conformational refolding. Ligand binding to the aptamer domain of the riboswitch induces premature termination of the mRNA synthesis of ligand-associated genes due to the coupled formation of 3'-structural elements acting as terminators. To date, there has been no high resolution structural description of the concerted process of synthesis and ligand-induced restructuring of the regulatory RNA element. Here, we show that for the guanine-sensing xpt-pbuX riboswitch from Bacillus subtilis, the conformation of the full-length transcripts is static: it exclusively populates the functional off-state but cannot switch to the on-state, regardless of the presence or absence of ligand. We show that only the combined matching of transcription rates and ligand binding enables transcription intermediates to undergo ligand-dependent conformational refolding.


Assuntos
Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Dobramento de RNA , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Riboswitch , Transcrição Gênica , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Modelos Moleculares , Conformação de Ácido Nucleico
10.
Mol Cell ; 60(5): 715-727, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26585389

RESUMO

The Alu element is the most successful human genomic parasite affecting development and causing disease. It originated as a retrotransposon during early primate evolution of the gene encoding the signal recognition particle (SRP) RNA. We defined a minimal Alu RNA sufficient for effective retrotransposition and determined a high-resolution structure of its complex with the SRP9/14 proteins. The RNA adopts a compact, closed conformation that matches the envelope of the SRP Alu domain in the ribosomal translation elongation factor-binding site. Conserved structural elements in SRP RNAs support an ancient function of the closed conformation that predates SRP9/14. Structure-based mutagenesis shows that retrotransposition requires the closed conformation of the Alu ribonucleoprotein particle and is consistent with the recognition of stalled ribosomes. We propose that ribosome stalling is a common cause for the cis-preference of the mammalian L1 retrotransposon and for the efficiency of the Alu RNA in hijacking nascent L1 reverse transcriptase.


Assuntos
Elementos Alu , RNA/química , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Células HeLa , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , RNA/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo
11.
Chembiochem ; 16(7): 1109-14, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25867500

RESUMO

Cellular RNA function is closely linked to RNA structure. It is therefore imperative to develop methods that report on structural stability of RNA and how it is modulated by binding of ions, other osmolytes, and RNA-binding ligands. Here, we present a novel method to analyze the stability of virtually any structured RNA in a highly parallel fashion. This method can easily determine the influence of various additives on RNA stability, and even characterize ligand-induced stabilization of riboswitch RNA. Current approaches to assess RNA stability include thermal melting profiles (absorption or circular dichroism) and differential scanning calorimetry. These techniques, however, require a substantial amount of material and cannot be significantly parallelized. Current fluorescence spectroscopic methods rely on intercalating dyes, which alter the stability of RNA. We employ the commercial fluorescent dye RiboGreen, which discriminates between single-stranded (or unstructured regions) and double-stranded RNA. Binding leads to an increase in fluorescence quantum yield, and thus reports structural changes by a change in fluorescence intensity.


Assuntos
Corantes Fluorescentes/química , Fluorometria/métodos , Estabilidade de RNA , RNA/química
12.
Methods Mol Biol ; 1008: 417-38, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23729261

RESUMO

The context of the membrane is crucial for the interaction of many membrane proteins with their ligands. However, many detailed studies cannot be carried out in living cells. Therefore, studying these interactions requires model membrane systems that are compatible with the used analytical method. A big variety of these methods is available, each of which has its advantages and disadvantages. This chapter gives an overview over the existing techniques, a basic introduction into work with lipids, and detailed protocols for selected methods.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Lipídeos/química , Proteínas de Membrana/química , Nanoestruturas/química , Lipossomas Unilamelares/química , Animais , Humanos , Ligantes
13.
Cell Microbiol ; 15(2): 237-47, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23121220

RESUMO

During HIV assembly, a protein coat on the inner leaflet of the plasma membrane drives the formation of virus particles, and appears to induce the preferential accumulation of 'raft' lipids in the viral envelope, although the lipid raft concept mainly proposes microdomains of these lipids in the outer leaflet. The common hypothesis is that Gag preferentially associates with, and thereby probably induces, raft-like domains, because the protein is multimerized and specifically linked to two saturated acyl chains. To test this hypothesis, we constructed a minimal in vitro system in which we analysed the interaction of a Gag derivative, which could be triggered to multimerize, with a domain-forming model membrane resembling the inner leaflet of the plasma membrane. Confirming studies with authentic Gag, this Gag derivative only bound to membranes when it was multimerized, myristoylated and when phosphatidylinositol 4,5-bisphosphate was present in the membrane. Unexpectedly, however, the multimerized Gag derivative was largely excluded from ordered domains in model membranes. This suggests that the mechanism of membrane reorganization during HIV assembly does not simply result from a higher affinity of the clustered Gag membrane binding domain to ordered membrane domains, but involves more complex biophysical interactions or possibly also an additional protein machinery.


Assuntos
Produtos do Gene gag/química , HIV/química , Microdomínios da Membrana/química , Lipossomas Unilamelares/química , Vírion/química , Produtos do Gene gag/metabolismo , Produtos do Gene gag/ultraestrutura , Proteínas de Fluorescência Verde , Células HEK293 , HIV/metabolismo , HIV/ultraestrutura , Humanos , Microdomínios da Membrana/metabolismo , Modelos Biológicos , Ácido Mirístico/química , Ácido Mirístico/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ligação Proteica , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Lipossomas Unilamelares/metabolismo , Vírion/metabolismo , Vírion/ultraestrutura
14.
J Biol Chem ; 286(43): 37768-77, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21885440

RESUMO

Pore-forming toxins have evolved to induce membrane injury by formation of pores in the target cell that alter ion homeostasis and lead to cell death. Many pore-forming toxins use cholesterol, sphingolipids, or other raft components as receptors. However, the role of plasma membrane organization for toxin action is not well understood. In this study, we have investigated cellular dynamics during the attack of equinatoxin II, a pore-forming toxin from the sea anemone Actinia equina, by combining time lapse three-dimensional live cell imaging, fluorescence recovery after photobleaching, FRET, and fluorescence cross-correlation spectroscopy. Our results show that membrane binding by equinatoxin II is accompanied by extensive plasma membrane reorganization into microscopic domains that resemble coalesced lipid rafts. Pore formation by the toxin induces Ca(2+) entry into the cytosol, which is accompanied by hydrolysis of phosphatidylinositol 4,5-bisphosphate, plasma membrane blebbing, actin cytoskeleton reorganization, and inhibition of endocytosis. We propose that plasma membrane reorganization into stabilized raft domains is part of the killing strategy of equinatoxin II.


Assuntos
Cálcio/metabolismo , Venenos de Cnidários/metabolismo , Citosol/metabolismo , Endocitose , Microdomínios da Membrana/metabolismo , Anêmonas-do-Mar/química , Animais , Células COS , Chlorocebus aethiops , Venenos de Cnidários/química , Venenos de Cnidários/farmacologia , Células HEK293 , Células HeLa , Humanos
15.
Retrovirology ; 7: 45, 2010 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-20478027

RESUMO

BACKGROUND: The foamy virus (FV) replication cycle displays several unique features, which set them apart from orthoretroviruses. First, like other B/D type orthoretroviruses, FV capsids preassemble at the centrosome, but more similar to hepadnaviruses, FV budding is strictly dependent on cognate viral glycoprotein coexpression. Second, the unusually broad host range of FV is thought to be due to use of a very common entry receptor present on host cell plasma membranes, because all cell lines tested in vitro so far are permissive. RESULTS: In order to take advantage of modern fluorescent microscopy techniques to study FV replication, we have created FV Gag proteins bearing a variety of protein tags and evaluated these for their ability to support various steps of FV replication. Addition of even small N-terminal HA-tags to FV Gag severely impaired FV particle release. For example, release was completely abrogated by an N-terminal autofluorescent protein (AFP) fusion, despite apparently normal intracellular capsid assembly. In contrast, C-terminal Gag-tags had only minor effects on particle assembly, egress and particle morphogenesis. The infectivity of C-terminal capsid-tagged FV vector particles was reduced up to 100-fold in comparison to wild type; however, infectivity was rescued by coexpression of wild type Gag and assembly of mixed particles. Specific dose-dependent binding of fluorescent FV particles to target cells was demonstrated in an Env-dependent manner, but not binding to target cell-extracted- or synthetic- lipids. Screening of target cells of various origins resulted in the identification of two cell lines, a human erythroid precursor- and a zebrafish- cell line, resistant to FV Env-mediated FV- and HIV-vector transduction. CONCLUSIONS: We have established functional, autofluorescent foamy viral particles as a valuable new tool to study FV--host cell interactions using modern fluorescent imaging techniques. Furthermore, we succeeded for the first time in identifying two cell lines resistant to Prototype Foamy Virus Env-mediated gene transfer. Interestingly, both cell lines still displayed FV Env-dependent attachment of fluorescent retroviral particles, implying a post-binding block potentially due to lack of putative FV entry cofactors. These cell lines might ultimately lead to the identification of the currently unknown ubiquitous cellular entry receptor(s) of FVs.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas Luminescentes/genética , Vírus Espumoso dos Símios/fisiologia , Proteínas Virais/genética , Virologia/métodos , Animais , Linhagem Celular , Humanos , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Recombinação Genética , Vírus Espumoso dos Símios/genética , Coloração e Rotulagem/métodos , Proteínas Virais/fisiologia , Peixe-Zebra
16.
Chemphyschem ; 10(16): 2805-12, 2009 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-19784973

RESUMO

Giant plasma membrane vesicles (GPMVs) are cell-derived model membrane systems that undergo large-scale lipid phase separation when cooled below room temperature. Because of their presumably more physiological lipid composition, they are increasingly used as alternatives to synthetic model membranes. However, the exact mechanism of GPMV formation, and thus, effects of this process on the physiological integrity of the membrane are still unclear. Herein, we identify the key steps of GPMV formation and characterize their differences with respect to the plasma membrane of intact cells. Addition of GPMV-inducing reagents triggers a steady Ca2+ influx that is accompanied by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] degradation and phosphatidyl serine (PS) externalization before detachment of the cytoskeleton and the onset of vesicle formation. When comparing GPMVs to other cell-derived model systems, PI(4,5)P2 is not detectable in phase-separating plasma membrane spheres (PMSs) either, but is present in non-phase-separating blebs. GPMVs differ from the physiological state of the plasma membrane in the presence of specific lipids, which limits their use as model systems. Furthermore, we propose that PI(4,5)P2 influences the phase-separation behavior.


Assuntos
Fosfatidilinositol 4,5-Difosfato/metabolismo , Actinas/química , Actinas/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Membrana Celular , Citoesqueleto , Células HeLa , Humanos , Microdomínios da Membrana , Microscopia de Fluorescência , Transição de Fase
17.
Genome Res ; 18(12): 1875-83, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18836035

RESUMO

Alu retrotransposons evolved from 7SL RNA approximately 65 million years ago and underwent several rounds of massive expansion in primate genomes. Consequently, the human genome currently harbors 1.1 million Alu copies. Some of these copies remain actively mobile and continue to produce both genetic variation and diseases by "jumping" to new genomic locations. However, it is unclear how many active Alu copies exist in the human genome and which Alu subfamilies harbor such copies. Here, we present a comprehensive functional analysis of Alu copies across the human genome. We cloned Alu copies from a variety of genomic locations and tested these copies in a plasmid-based mobilization assay. We show that functionally intact core Alu elements are highly abundant and far outnumber all other active transposons in humans. A range of Alu lineages were found to harbor such copies, including all modern AluY subfamilies and most AluS subfamilies. We also identified two major determinants of Alu activity: (1) The primary sequence of a given Alu copy, and (2) the ability of the encoded RNA to interact with SRP9/14 to form RNA/protein (RNP) complexes. We conclude that Alu elements pose the largest transposon-based mutagenic threat to the human genome. On the basis of our data, we have begun to identify Alu copies that are likely to produce genetic variation and diseases in humans.


Assuntos
Elementos Alu , Genoma Humano , Retroelementos , Evolução Molecular , Variação Genética , Células HeLa , Humanos , Modelos Genéticos , Modelos Moleculares
18.
J Biol Chem ; 283(40): 26902-10, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18650439

RESUMO

Dictyostelium myosin-5b is the gene product of myoJ and one of two closely related myosin-5 isoenzymes produced in Dictyostelium discoideum. Here we report a detailed investigation of the kinetic and functional properties of the protein. In standard assay buffer conditions, Dictyostelium myosin-5b displays high actin affinity in the presence of ADP, fast ATP hydrolysis, and a high steady-state ATPase activity in the presence of actin that is rate limited by ADP release. These properties are typical for a processive motor that can move over long distances along actin filaments without dissociating. Our results show that a physiological decrease in the concentration of free Mg(2+)-ions leads to an increased rate of ADP release and shortening of the fraction of time the motor spends in the strong actin binding states. Consistently, the ability of the motor to efficiently translocate actin filaments at very low surface densities decreases with decreasing concentrations of free Mg(2+)-ions. In addition, we provide evidence that the observed changes in Dd myosin-5b motor activity are of physiological relevance and propose a mechanism by which this molecular motor can switch between processive and non-processive movement.


Assuntos
Dictyostelium/enzimologia , Miosinas/metabolismo , Proteínas de Protozoários/metabolismo , Citoesqueleto de Actina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cátions Bivalentes/metabolismo , Isoenzimas/metabolismo , Magnésio/metabolismo
19.
Mol Cell Biol ; 27(12): 4589-600, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17403897

RESUMO

Hsmar1, one of the two subfamilies of mariner transposons in humans, is an ancient element that entered the primate genome lineage approximately 50 million years ago. Although Hsmar1 elements are inactive due to mutational damage, one particular copy of the transposase gene has apparently been under selection. This transposase coding region is part of the SETMAR gene, in which a histone methylatransferase SET domain is fused to an Hsmar1 transposase domain. A phylogenetic approach was taken to reconstruct the ancestral Hsmar1 transposase gene, which we named Hsmar1-Ra. The Hsmar1-Ra transposase efficiently mobilizes Hsmar1 transposons by a cut-and-paste mechanism in human cells and zebra fish embryos. Hsmar1-Ra can also mobilize short inverted-repeat transposable elements (MITEs) related to Hsmar1 (MiHsmar1), thereby establishing a functional relationship between an Hsmar1 transposase source and these MITEs. MiHsmar1 excision is 2 orders of magnitude more efficient than that of long elements, thus providing an explanation for their high copy numbers. We show that the SETMAR protein binds and introduces single-strand nicks into Hsmar1 inverted-repeat sequences in vitro. Pathway choices for DNA break repair were found to be characteristically different in response to transposon cleavage mediated by Hsmar1-Ra and SETMAR in vivo. Whereas nonhomologous end joining plays a dominant role in repairing excision sites generated by the Hsmar1-Ra transposase, DNA repair following cleavage by SETMAR predominantly follows a homology-dependent pathway. The novel transposon system can be a useful tool for genome manipulations in vertebrates and for investigations into the transpositional dynamics and the contributions of these elements to primate genome evolution.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Elementos de DNA Transponíveis/genética , Elementos de DNA Transponíveis/fisiologia , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Nucleares/metabolismo , Transposases/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Simulação por Computador , Sequência Consenso , Proteínas de Ligação a DNA/genética , Evolução Molecular , Genes Reporter , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Humanos , Luciferases/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Filogenia , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transposases/genética
20.
Chromosome Res ; 14(8): 831-44, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17171577

RESUMO

We have identified three families of miniature inverted-repeat transposable elements (VulMITEs) in the genome of sugar beet (Beta vulgaris L.), evidently derived from a member of the Vulmar family of mariner transposons. While VulMITEs I are typical stowaway-like MITEs, VulMITEs II and VulMITEs III are rearranged stowaway elements of increased size. The integration of divergent moderately and highly repetitive sequences into VulMITEs II and, in particular in VulMITEs III, respectively, shows that amplification of repetitive DNA by MITEs contribute to the increase of genome size with possible implications for plant genome evolution. Fluorescent in-situ hybridization (FISH), for the first time visualizing stowaway MITE distribution on plant chromosomes, revealed a dispersed localization of VulMITEs along all B. vulgaris chromosomes. Analysis of the flanking sequences identified a dispersed repeat as target site for the integration of the stowaway element VulMITE I. Recent transposition of VulMITE I, which most likely occurred during the domestication of cultivated beets, was concluded from insertional polymorphisms between different B. vulgaris cultivars and species.


Assuntos
Beta vulgaris/genética , Cromossomos de Plantas/genética , Elementos de DNA Transponíveis/genética , Genoma de Planta/genética , Sequência de Bases , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...